# **Challenges for Heavy Ions at the LHC**

Quark Matter Italia, Roma, 23 July 2010

# "Big Picture" from RHIC

Have created the hottest matter ever on Earth  $T > 2 \times 10^{12} \text{ K}$ > 100,000 times hotter than the core of Sun

It has characteristics of a soup of quarks and gluons

It flows like a liquid, better than any we know or have made

It is opaque to the most energetic parton probes

It has some properties predicted in strongly-coupled AdS/CFT with black hole in 5D projected onto our 4D world!

On the Horizon.....

Heavy lons in the Large Hadron Collider!

Quark Matter Italia, Roma, 23 July 2010







## **Seminal Results from RHIC in More Detail**

Quark Matter Italia, Roma, 23 July 2010



#### Quark Matter Italia, Roma, 23 July 2010



#### Quark Matter Italia, Roma, 23 July 2010

## Identified Hadron Elliptic Flow Complicated

## Complicated $v_2(p_T)$ flow pattern is observed for identified hadrons $d^2n/dp_Td\phi \sim 1 + 2 v_2(p_T) \cos(2 \phi)$



If the flow established at quark level, it is predicted to be simple  $\rightarrow$   $KE_T \rightarrow KE_T / n_q$ ,  $v_2 \rightarrow v_2 / n_q$ ,  $n_q = (2, 3 \text{ quarks})$  for (meson, baryon) Quark Matter Italia, Roma, 23 July 2010 John Harris (Yale)



Quark Matter Italia, Roma, 23 July 2010

# **Ultra-low (Shear)Viscosity Fluids**



Quantum lower viscosity bound:  $\eta/s > 1/4\pi$  (Kovtun, Son, Starinets)

From strongly coupled N = 4 SUSY YM theory.

2-d Rel Hydro describes STAR  $v_2$  data with  $\eta/s \le 0.1$  near lower bound!

Quark Matter Italia, Roma, 23 July 2010



Quark Matter Italia, Roma, 23 July 2010



### "Chemical" equilibration (particle yields & ratios):

Particles yields represent equilibrium abundances

→ universal hadronization temperature



Small net baryon density (K<sup>+</sup>/K<sup>-</sup>, B/B ratios)  $\rightarrow \mu_{B} \sim 25 - 40 \text{ MeV}$ Chemical Freezeout Conditions  $\rightarrow T = 177 \text{ MeV}, \mu_{B} = 29 \text{ MeV} \rightarrow T \sim T_{critical}$  (QCD)

Quark Matter Italia, Roma, 23 July 2010



## **Probing Hot QCD Matter with Hard Probes**



### $\rightarrow$ parton energy loss:

modification of jets and leading particles & jet-correlations

Quark Matter Italia, Roma, 23 July 2010

# High Momentum Hadrons Suppressed,

## <u>Photons Not</u>

Deviations from binary scaling of hard collisions:





#### Quark Matter Italia, Roma, 23 July 2010

## **Heavy Quark Suppression**

pQCD Calculations: Armesto, Cacciari, Dainese, Salgado, Wiedemann, PLB637:362, 2006 Using fixed order next-to-leading log (FONL) cross sections for heavy quarks (charm and beauty)



### PHENIX & STAR data

Heavy quarks appear to be suppressed ~ light quarks !!

Cannot be explained from theory!

Important to measure  $\Delta E$  of gluons  $\rightarrow$  light  $\rightarrow$  heavy quarks...  $\Delta E_{gluon} > \Delta E_{quark, m=0} > \Delta E_{quark, m>0}$ 

Quark Matter Italia, Roma, 23 July 2010

# Hard Scattering (Jets) as a Probe of Dense Matter



## Can we see jets in high energy Au+Au?

Quark Matter Italia, Roma, 23 July 2010

## **Disappearance of Away-Side "Jet"**



Quark Matter Italia, Roma, 23 July 2010

## **Real Jets to Probe Dense Matter!**



## Possible with appropriate consideration of background

Quark Matter Italia, Roma, 23 July 2010





## Strong evidence for broadening of the jet energy profile

Quark Matter Italia, Roma, 23 July 2010



Quark Matter Italia, Roma, 23 July 2010

# Soon in Geneva Heavy lons in Large Hadron Collider



### RHIC and LHC:

Cover 2 – 3 decades of energy ( $\sqrt{s_{NN}} \sim 20 \text{ GeV} - 5.5 \text{ TeV}$ )

What are the properties of hot QCD in this temperature range (T ~ 150 - 600 MeV)?

# LHC Heavy Ion Program



<u>LHC Heavy Ion Data-taking</u> Design: Pb + Pb at  $\sqrt{s_{NN}} = 5.5$  TeV (1 month per year)

LHC Collider Detectors
- ATLAS
- CMS
- ALICE





#### John Harris (Yale)

#### Quark Matter Italia, Roma, 23 July 2010

# "Probable" LHC Near-term Heavy Ion Program

### 2010 (official)

18 – 31 Oct: Change-over from p + p to Pb + Pb

1 - 28 Nov:  $\sqrt{s_{NN}} = 2.76$  TeV Pb + Pb for physics

### 2011 (anticipated)

November timeframe:  $\sqrt{s_{NN}} = 2.76 \text{ TeV Pb} + \text{Pb}$  for physics 2010 - 2011: increasing  $L \rightarrow \text{integral luminosity } \int L \, dt \sim 25 \, \mu b^{-1}$ 

### 2012 (official)

Shutdown for maintenance, installation & repairs

#### <u>2013</u>

1 month  $\sqrt{s_{NN}} = 5.5 \text{ TeV Pb} + \text{Pb}$  for physics

### <u>2014</u>

1 month  $\sqrt{s_{NN}} = 5.5 \text{ TeV Pb} + \text{Pb}$  for physics to reach  $\int L dt \sim 1 \text{ nb}^{-1}$ 

### <u>2015</u>

1 month\*  $\sqrt{s_{NN}} = 5.5$  TeV p + Pb and Pb + p for physics

 \* Possibly longer than 1 month due to proton injector shutdown/upgrade lighter A + A possible

Quark Matter Italia, Roma, 23 July 2010

## Simple Expectations – Heavy Ion Interactions at LHC



Quark Matter Italia, Roma, 23 July 2010

# **Challenges for Heavy lons at the LHC**

### <u>Determine Initial Conditions</u> – <u>What is the extent of shadowing, saturation, CGC?</u>

 $\rightarrow\,$  sets the stage for particle production / dynamics

### • Determine Dynamics – What are the timescales, interactions times, temperature?

 $\rightarrow$  use high  $p_T$  jets & tag heavy quark jets

### Understand response of the medium!

Strongly interacting quarks and gluons  $\rightarrow$  away-side response?

### Color screening of the medium!

Deconfinement? (compare LQCD), initial T, other effects  $\rightarrow J/\psi$  & Y statesQuark Matter Italia, Roma, 23 July 2010John Harris (Yale)

# Challenges for Heavy lons at the LHC

• Determine Initial Conditions – What is the extent of shadowing, saturation, CGC?

 $\rightarrow\,$  sets the stage for particle production / dynamics

Quark Matter Italia, Roma, 23 July 2010

# **Initial Conditions at the LHC**



## Establish initial conditions at LHC

→Measure particle multiplicities shadowing, gluon saturation, CGC? establish the <u>topology</u> for particle production and dynamics at LHC!

Quark Matter Italia, Roma, 23 July 2010

## N. Armesto, arXiv:0804.4158 LHC predictions: An overview



# **Challenges for Heavy lons at the LHC**

### • Determine Dynamics – What are the timescales, interactions times, temperature?

Quark Matter Italia, Roma, 23 July 2010

# **Dynamics from Soft Physics at the LHC**

## Measure particle ratios, spectra and yields with heavy ions at LHC

- Chemical freezeout temperature should be same as  $T_{\rm cr}\,{\sim}175$  MeV?

If not, we are completely wrong about interpretation of RHIC data!

e.g. initial  $T_{LHC} \sim 2T_{RHIC}$  .... in any case  $T_{cr}(LHC) = T_{cr}(RHIC) = T_{cr}(QGP)!$ 

*T*,  $\mu_{\rm B}$  &volume are only parameters – connected to QCD phase boundary



B. Hippolyte et al. (ALICE) Eur. Phys. J. C49 (2007) 121.

# Heavy Ion Collision Dynamics at the LHC

## <u>LHC Heavy lons –</u>

- expectations based on pQCD predictions & RHIC results
- a lesson from RHIC guided by theory + versatility + "expect the unexpected"

## Soft Physics ( $p_T \leq 2 \text{ GeV/c}$ ) with heavy ions at LHC –

- smooth extrapolation from SPS  $\rightarrow$  RHIC  $\rightarrow$  LHC?
- expansion dynamics different (initial state, flow, HBT, evolution of T, strange/charm/beauty)



 $v2 \rightarrow viscosity \rightarrow coupling strength$ Quark Matter Italia, Roma, 23 July 2010



# **Challenges for Heavy lons at the LHC**

### •<u>Understand parton energy loss!</u> – What are the microscopic processes?

 $\rightarrow$  mass and flavor dependence?

 $\rightarrow$  use high  $p_T$  jets & tag heavy quark jets

<u>Understand response of the medium!</u>

Strongly interacting quarks and gluons  $\rightarrow$  away-side response?

Quark Matter Italia, Roma, 23 July 2010

# <u>High p<sub>T</sub> Particles and Jet Rates at LHC</u>



Quark Matter Italia, Roma, 23 July 2010

# Jets in Heavy Ion Collisions at RHIC & LHC



Jets in heavy ion collisions? [inclusive, di-jets, hadron-jet,  $\gamma$ -jet,..]

 Parton energy loss in QCD medium Requires detailed measurements for theoretical comparison / understanding Establish energy-loss mechanisms

 – energy flow within jets, quark vs gluon jet differences
 Flavor and mass dependence, fragmentation modification ...

Medium response to parton energy loss – establish properties of the medium Quark Matter Italia, Roma, 23 July 2010

## Challenge for Jet-finding - Learning from Tevatron &



## $p + \bar{p}$ experience (CDF)

- most of energy within cone of

 $\mathsf{R} = \sqrt{(\Delta\eta^2 + \Delta\phi^2)} < 0.3$ 

Au + Au experience (STAR) - HI Background

Must suppress "soft" background:

- small jet cones R = 0.3-0.4
- $p_T$  cut:  $p_T > 1 2 \text{ GeV/c}$
- EbyE out-of-cone background energy



#### Quark Matter Italia, Roma, 23 July 2010

# Example – Jets in ALICE with EMCal: R<sub>AA</sub>



## Central Pb+Pb $\sqrt{s_{NN}}$ =5.5 TeV



Jet systematic uncertainties small!

Measurements possible to 200 GeV – statistically and systematically

Quark Matter Italia, Roma, 23 July 2010

# Jet Broadening at RHIC & ALICE with EMCal



- qPYTHIA not optimized (yet) do not draw conclusions from shape diff's.
- Jet energy profile (AuAu data) BROADENED indicating JET QUENCHING!
- Small experimental systematic uncertainties in measurements (ratios from same exp. and data set) → a precision measurement at LHC!

Quark Matter Italia, Roma, 23 July 2010

# **Challenges for Heavy lons at the LHC**

<u>Color screening of the medium!</u>

Deconfinement? (compare LQCD), initial T, other effects  $\rightarrow J/\psi$  & Y states

Quark Matter Italia, Roma, 23 July 2010

# Heavy Flavor at LHC

## Significant increase at LHC

Abundance of heavy flavors
probe early times, calculable

 $σ_{cc}$  (LHC) ~ 10  $σ_{cc}$  (RHIC)  $σ_{bb}$  (LHC) ~ 100  $σ_{bb}$  (RHIC)

# <u>Heavy Quarkonia</u>

- J/ $\psi$  suppression (or enhancement?)
- Y suppression (statistics limited)

## **Open Charm & Beauty**

- Open charm and beauty  $p_T$  spectra Displaced vertices: D- & B-mesons (e.g.  $D^o \rightarrow K^- \pi + , B \rightarrow e + hadrons$ )
- Heavy quark in-medium energy loss  $\rightarrow$  Mass/color charge dependence

Quark Matter Italia, Roma, 23 July 2010





# Quarkonia at the LHC

## <u>Quarkonia</u>

(initial temperature, Debye color screening, recombination) •  $J/\psi$ ,  $\Upsilon$ ,  $\Upsilon$  (excellent),  $\Upsilon$ "(2-3 yrs),  $\psi$ ' (very difficult)



Color screening of cc pair results in  $J/\psi$  (cc) suppression!



Quark Matter Italia, Roma, 23 July 2010

# Quarkonia at the LHC

## <u>Quarkonia</u>

(initial temperature, Debye color screening, recombination) •  $J/\psi$ ,  $\Upsilon$ ,  $\Upsilon$  (excellent),  $\Upsilon$ "(2-3 yrs),  $\psi$ ' (very difficult)



Measure melting order of  $c\overline{c}$ :  $\Psi$ ',  $\chi_c$ ,  $J/\psi$  bb: Y", Y', Y

#### Quark Matter Italia, Roma, 23 July 2010

# <u>Questions – Quark-Gluon Plasma at RHIC & LHC</u>

- How does the system evolve and thermalize from its initial state?
- What are the properties & constituents (vs. T) of the QGP?
- Can we understand parton energy loss at a fundamental level?
- How does hadronization take place?
- Is the QCD Phase Diagram featureless above Tc? Coupling strength vs T....
- Are there new phenomena?
- What's the range of validity of the theories (non-pQCD, pQCD, strings)?
- Can there be new developments in theory (lattice, hydro, parton E-loss, string theory...) and understanding.....across fields.....? Quark Matter Italia, Roma, 23 July 2010 John Harris (Yale)

# Heavy Ion Programs at RHIC and LHC



## Cover 3 decades of energy in center-of-mass

LHC

#### To investigate properties of hot QCD matter at T ~ 150 – 1000 MeV!

ALICE

Quark Matter Italia, Roma, 23 July 2010

## The End

Quark Matter Italia, Roma, 23 July 2010